# 1 2019 Regular BECE Maths Paper 1

1. Given that \(A = \{2, 4, 6, 8, 10 \}\) and \(B = \{4, 8, 12 \}\), find \(A \cup B\).

A. {4, 8}

B. {2, 8, 12}

C. {4, 6, 8, 12}

D. {2, 4, 6, 8, 10, 12}

2. Express 0.000344 in standard form.

A. \(3.44 \times 10^{-6}\)

B. \(3.44 \times 10^{-5}\)

C. \(3.44 \times 10^{-4}\)

D. \(3.44 \times 10^{-3}\)

3. Which of the following numbers is the **largest**?

A. -70

B. -50

C. -3

D. -2

4. Correct 0.024561 to **three** significant figures.

A. 0.03

B. 0.025

C. 0.0245

D. 0.0246

5. Simplify: \((7^5 \times 7^3) \div 7^6\).

A. \(7^9\)

B. \(7^4\)

C. \(7^3\)

D. \(7^2\)

6. How many lines of symmetry has a square?

A. 0

B. 1

C. 2

D. 4

7. Solve the equation \(\displaystyle 10 - \frac{x + 3}{2} = 8\).

A. -9

B. -3

C. 1

D. 15

8. Factorize: \(kx + 2xt - 4k - 8t\).

A. \((k - 2t)(x + 4)\)

B. \((k + 2t)(x + 4)\)

C. \((k + t)(x - 4)\)

D. \((k + 2t)(x - 4)\)

9. There are qw boys and 18 girls in a class. Find the fraction of boys in teh class.

A. \(\frac25\)

B. \(\frac35\)

C. \(\frac23\)

D. \(\frac34\)

10. Express 30% as a fraction in its **lowest** term.

A. \(\frac{7}{10}\)

B. \(\frac{3}{20}\)

C. \(\frac{7}{20}\)

D. \(\frac{3}{10}\)

11. Make \(k\) the subject of the relation, \(ky - k = y^2\).

A. \(k = \frac{y^2}{y - 1}\)

B. \(k = \frac{y^2}{y + 1}\)

C. \(k = - \frac{y^2}{y + 1}\)

D. \(k = \frac{y^2 + 1}{y - 1}\)

12. The mean of the numbers \(5, 2x, 4\) and 3 is 5. Find the value of \(x\).

A. 3

B. 4

C. 5

D. 8

13. Find the rule of the mapping:

\(\matrix{x & 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ y & 3 & 1 & -1 & -3 & -5}\)

A. \(y = 2x + 2\)

B. \(y = -2x + 2\)

C. \(y = 4x\)

D. \(y = -2x + 5\)

14. The two sides of a parallelogram are 4.8 m and 7.2 m long. Find its perimeter.

A. 48.0 m

B. 34.6 m

C. 24.0 m

D. 17.3 m

15. A tank in the form of a cuboid has length 6 m and breadth 4 m. If the volume of the tank is 36 m^{3}, find the height.

A. 0.67 m

B. 1.5 m

C. 1.8 m

D. 5.0 m

16. If the bearing of A from B is 240°, fiind the bearing of B from A.

A. 040°

B. 060°

C. 120°

D. 300°

17. Find the truth set of the inequality \(2y + 5 < 4y - 5\).

A. \(\{y: y > 5 \}\)

B. \(\{y: y < 5 \}\)

C. \(\{y: y > 1 \}\)

D. \(\{y: y > 0 \}\)

18. Find the gradient of the straight line which passes through the points (-3, 4) and (3, -2).

A. 2

B. 1

C. -2

D. -1

19. If \(6:8 = r:48\), find the value of \(r\).

A. 36

B. 34

C. 14

D. 12

20. NOT DRAW TO SCALE

Find ∠QPS in the diagram.

A. 70°

B. 40°

C. 35°

D. 20°

21. A man travelled a distance of 8 km in an hour. How long will it take him to cover a distance of 12 km, travelling at the same speed?

A. \(1\frac13\) hrs

B. \(1\frac12\) hrs

C. \(1\frac34\) hrs

D. 2 hrs

22. A number is selected at random from 25, 26, 27, 28, …, 35. Find the probability that the number selected is a prime number.

A. \(\frac{6}{11}\)

B. \(\frac{3}{11}\)

C. \(\frac{2}{11}\)

D. \(\frac{1}{11}\)

23. Express \(\frac{12}{25}\) in decimal fraction.

A. 0.0408

B. 0.048

C. 0.408

D. 0.48

24. Find the diameter of a circle whose circumference is 88 cm. (Take \(\pi = \frac{22}{7}\))

A. 14 cm

B. 22 cm

C. 28 cm

D. 82 cm

25. When twelve is subtracted from three times a certain number and the result is divided by four, the answer is eighteen. Find the number.

A. 84

B. 40

C. 28

D. 20

26. NOT DRAW TO SCALE

In the diagram, line \(MN\) is parallel to line \(TU\), line \(TS\) cuts line \(MN\) at \(O\) and ∠MOS = 115°. Find ∠OTU.

A. 65°

B. 55°

C. 45°

D. 25°

27. Given that \(r = \pmatrix{-3 \\ -5}\) and \(t = \pmatrix{3 \\ -5}\), find \(r + t\).

A. \(\pmatrix{ -6 \\ 10 }\)

B. \(\pmatrix{ -6 \\ -10 }\)

C. \(\pmatrix{ 0 \\ -10 }\)

D. \(\pmatrix{ 6 \\ 10 }\)

28. A trader sold 90 oranges at 3 for GHC 0.75. How much did she get from selling all the oranges?

A. GHC 22.50

B. GHC 67.50

C. GHC 75.00

D. GHC 225.50

29. Express 72 as a product of prime factors.

A. \(2^3 \times 3^2\)

B. \(2^2 \times 3^3\)

C. \(2^2 \times 3^2\)

D. \(2 \times 3\)

30. Simplify: \(3a \times 24ab\).

A. \(27 ab^2\)

B. \(27a^2 b\)

C. \(72 ab^2\)

D. \(72a^2b\)

31. Simplify: \(\pmatrix{-2 \\ 3} + \pmatrix{-1\\5}\).

A. \(\pmatrix{-3\\-2}\)

B. \(\pmatrix{-1\\2}\)

C. \(\pmatrix{-3\\8}\)

D. \(\pmatrix{-1\\-2}\)

32. Multiply 247 by 32.

A. 6916

B. 7804

C. 7904

D. 1235

33. Evaluate \((0.07 \times 0.02) \div 14\).

A. 0.01

B. 0.001

C. 0.0001

D. 0.00001

34. In a class of 23 students, the girls were 7 more than the boys. How many boys were in the class?

A. 8

B. 15

C. 16

D. 30

35. Express 30 minutes as a percentage of 3 hours 20 minutes.

A. 12.5%

B. 15%

C. \(16\frac23\%\)

D. 20%

36. Find the Least Common Multiple (LCM) of 2, 3 and 5.

A. 6

B. 12

C. 24

D. 30

37. The simple interest on GHC 450.00 for 4 years is GHC 45.00, find the rate of interest.

A. 2.5%

B. 10%

C. 25%

D. 6.5%

38. Find the median of the following numbers: 46, 68, 34, 37, 76 and 81.

A. 35.5

B. 57

C. 67

D. 68

In the Venn diagram \(M\) and \(N\) are the subsets of the universal set **U**.

Use this information to answer questions **39** and **40**.

39. Find \(M \cap N\).

A. {7}

B. {2, 7}

C. {3, 5, 8}

D. {1, 2, 3, 4, 5, 6, 7, 8}

40. How many members are in the set \(N\)?

A. 2

B. 3

C. 4

D. 6